Binary codes with covering radius one: Some new lower bounds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds for q-ary Codes with Large Covering Radius

Let Kq(n,R) denote the minimal cardinality of a q-ary code of length n and covering radius R. Recently the authors gave a new proof of a classical lower bound of Rodemich on Kq(n, n−2) by the use of partition matrices and their transversals. In this paper we show that, in contrast to Rodemich’s original proof, the method generalizes to lower-bound Kq(n, n − k) for any k > 2. The approach is bes...

متن کامل

Some new lower bounds for ternary covering codes

In [5], we studied binary codes with covering radius one via their characteristic functions. This gave us an easy way of obtaining congruence properties and of deriving interesting linear inequalities. In this paper we extend this approach to ternary covering codes. We improve on lower bounds for ternary 1-covering codes, the so-called football pool problem, when 3 does not divide n − 1. We als...

متن کامل

New upper bounds for binary covering codes

Improved upper bounds are presented for K(n, r), the minimum cardinality of a binary code of length n and coveting radius r. The new bounds are obtained by both new and old constructions; in many of these, computer search using simulated annealing and tabu search plays a central role. Some new linear coveting codes are also presented. An updated table of upper bounds on K(n,r), n~<64, r~<12, is...

متن کامل

On the covering radius of some binary cyclic codes

We compute the covering radius of some families of binary cyclic codes. In particular, we compute the covering radius of cyclic codes with two zeros and minimum distance greater than 3. We compute the covering radius of some binary primitive BCH codes over F2f , where f = 7, 8.

متن کامل

New Bounds for Linear Codes of Covering Radius 2

The length function lq(r,R) is the smallest length of a q-ary linear code of covering radius R and codimension r. New upper bounds on lq(r, 2) are obtained for odd r ≥ 3. In particular, using the one-to-one correspondence between linear codes of covering radius 2 and saturating sets in the projective planes over finite fields, we prove that

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1997

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(96)00290-7